
XPRZModem

XPRZModem ii

COLLABORATORS

TITLE :

XPRZModem

ACTION NAME DATE SIGNATURE

WRITTEN BY August 2, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

XPRZModem iii

Contents

1 XPRZModem 1

1.1 XPRZModem.guide . 1

1.2 introduction . 1

1.3 installation . 2

1.4 options . 3

1.5 Text Translation Mode . 4

1.6 Overwrite Mode . 5

1.7 Buffer Size . 5

1.8 Frame Size . 6

1.9 Error Count . 6

1.10 Block Size . 7

1.11 Auto Activate . 7

1.12 Delete After Sending . 7

1.13 Keep Partial Files . 7

1.14 Send Full Directory Path . 8

1.15 Receive Full Directory Path . 8

1.16 Default Path . 8

1.17 Serial Port Settings . 8

1.18 Receiving Files . 9

1.19 sending . 9

1.20 technical . 10

1.21 future . 13

1.22 history . 13

1.23 todo . 15

1.24 credits . 16

1.25 Olaf ’Olsen’ Barthel . 16

1.26 Jim Cooper . 16

1.27 Geoffrey Faivre-Malloy . 16

1.28 Rainer Hess . 16

1.29 Rick A. Huebner . 17

XPRZModem iv

1.30 Willy Langeveld . 17

1.31 Marco Papa . 17

1.32 William M. Perkins . 17

1.33 John Tillema . 17

XPRZModem 1 / 17

Chapter 1

XPRZModem

1.1 XPRZModem.guide

XPRZModem.library
Version 3.1
Oct 01,1993

Contents:

Introduction

Installation

Options

Serial Port Settings

Receiving Files

Sending Files

Technical Information

Future

Revision History

To do

Credits

1.2 introduction

Introduction

XPRZModem.library is an Amiga shared library (with full source code) which
provides ZModem file transfer capability to any XPR-compatible communications

XPRZModem 2 / 17

program. The XPR (eXternal PRotocol) standard describes an interface method
which allows various file transfer protocols to be implemented as Amiga shared
libraries. These libraries may then be used interchangeably in any compatible
communications program. This takes a heavy load off of the comm program
author, who no longer has to support dozens of different file transfer
protocols in their program in order to make it widely useful and popular. The
comm program is also smaller and more efficient as a result, since all those
obscure protocols (you know, the ones *you* don’t need) are no longer taking up
space.

The XPR standard also helps users, who can mix and match their favorite
file transfer protocols with their favorite comm programs. And when new
protocols are invented, the user simply plugs in a new library, and voila!,
it’s ready to use. Hopefully, making protocols easy to support will allow more
and better comm programs to be written, as authors can concentrate on their
programs instead of constantly re-inventing the wheel.

Of course, for all of this wonderful stuff to happen, there needs to be a
good selection of these XPR libraries available to the public. It’s the
classic chicken-and-egg problem; comm program authors won’t be motivated to
support the XPR standard unless there are a sizable number of protocols
available for it. And other programmers won’t be motivated to write XPR
libraries until there are a sizable number of comm programs which can use them.
In an effort to do my bit [B^)] for the Amiga community, which has given me
so many neat toys to play with over the past few years, I decided to try and
help get the ball rolling.

Hopefully, the early availability of a ZModem library will help stimulate
interest in the XPR standard, resulting in better Amiga telecomms for all of
us. And by making my source code PD, I hope to help others interested in
writing XPR libraries by giving them some serious example code. Also, having
ZModem library code readily available to John Q. Hacker should help ensure a
steady stream of enhanced ZModem libraries (with enzymes) for all of us to use
in the future.

Of course, no discussion of the XPR standard would be complete without
giving proper credit to the author,

Willy Langeveld
of the Stanford Linear

Accelerator Center. Many thanks are due him for this effort. If you have any
further questions about the XPR standard, be sure and download the spec; it
should be available on BIX (since he’s a sysop there), or on most other major
systems.

All files in this archive which are not copyrighted are hereby
released to the public domain (which they were anyway, by way of not being
copyrighted, but I want to make sure YOU realize that). Do as you like
with them. Please make lots of copies and distribute them all over the
place, and make lots of derivative works, and everything! Heck, you can
even publicly perform and/or display this code if you can figure out how...

1.3 installation

Just copy the xprzmodem.library file into your LIBS: directory. All
XPR-compatible comm programs should provide a way for you to select which XPR

XPRZModem 3 / 17

protocol you wish to use, either by giving you a file requester showing
LIBS:xpr*.library, or by automatically detecting these libraries and adding
them into their menus.

680x0_1x : All Kickstarts, all Prozessors.
680x0_2x : For Kickstart 2.x (37.175) or higher, all Prozessors.
68020+_1x: All Kickstarts, optimized code for Prozessor-Type 68020, 68030 and

68040.
68020+_2x: For Kickstart 2.x (37.175) or higher, optimized code for

Prozessor-Type 68020, 68030 and 68040.

1.4 options

The XPR standard lays out two ways for the comm program user ←↩
to specify

options for the XPR. The more primitive option is for the comm program to
provide a method of passing an option string to the XPR library before
transferring files. The precise format and usage of this option string is left
up to the XPR author; the comm program just sends it verbatim. If an
environment variable is found with the same name as the XPR (i.e. there’s a
file in the ENV: directory called "xprzmodem"), the comm program is supposed to
use this string (contents of file) to initialize the protocol options. Also, a
menu option or some such should normally be provided which will allow the user
to be prompted for the option string interactively.

Version 2.0 of the XPR standard created a new, more sophisticated way for
the comm program user to specify XPR options. If the comm program supports it,
the XPR library can give the comm program a list of option prompts, and the
comm program can then let the user interactively set the various options
individually, possibly even using nice gadgets and stuff.

In any case, no matter how your particular comm program feels like
handling it, these are the options supported by this implementation of ZModem:

Text Translation Mode
- Controls whether or not CR/LF pairs are translated.

Overwrite Mode
- Controls what happens when a duplicate filename is

found.

Buffer Size
- Controls the size of the file I/O buffer.

Frame Size
- Sends an ACK after X-many bytes.

Error Count
- Determines the number of sequential errors before

ZModem will abort the transfer.

XPRZModem 4 / 17

Block Size
- Determines the maximum block size.

Auto-Activate
- Controls whether or not ZModem will automatically

activate a receive.

Delete After Sending
- Controls whether or not the file is deleted after

it has been sent.

Keep Partial Files
- Controls whether or not partially received files

are kept.

Receive Full Dir Path
- Controls whether or not ZModem will use the full

directory path sent.

Send Full Dir Path
- Controls whether or not ZModem will send the full

directory path.

Default Receive Path
- Gives the default path for downloads to be.

If setting the options via the option string method (either ENV: file
or primitive comm program), note that the setting for each option must
immediately follow the option character with no intervening characters
("TY", not "T Y" or "T=Y"). When setting multiple options at once,
separate the options from each other with commas and/or spaces; for
example, "TN,OR,F0". You don’t have to specify all options every time; the
options you specify will be merged into the current option settings,
replacing their old values. Upper/lower case is not significant. The
default option settings if you don’t change anything are "TC, ON, B16, F0,
E10, AY, DN, KY, SN, RN, P".

If the comm program supports the xpr_options() call added in version
2.0 of the XPR spec, you should be prompted for each option with a nice
prompt message such as "Text mode (Y,N,?,C):" and possibly be able to use
Intuition string and/or button gadgets instead of being stuck with the
semi-cryptic option string format described above.

1.5 Text Translation Mode

Text Translation Mode

XPRZModem 5 / 17

Text Yes (TY) - If receiving, translate CR/LF pairs or solo CR chars to
normal Amiga LF chars. Ignore data past ^Z. If sending,
suggests to receiver that they should receive this file in
text mode.

Text No (TN) - Receive file verbatim, without changes. If sending, suggest
to receiver that they receive this file verbatim, without
translations.

Text (T?) - If receiving, use sender’s suggestion as to whether to do
Status EOL translations or not. If sending, tell receiver to use
Unknown default mode, because we don’t know either.

Text Comm (TC) - The library asks the comm program whether or not to use
(Default) Text mode for each file. If the comm program doesn’t

support the necessary xpr_finfo() call,
or if the call fails, this option acts like T?. From the
user’s point of view, what this option normally does is set
the Text mode to match the comm program’s built-in
text/binary/end-of-line/translation mode, if any.

NOTE: The T option serves only as a suggestion to the receiving system when
sending files; the receiver makes the final decision as to whether to take your
advice or to force the files to be received in text or binary mode.

1.6 Overwrite Mode

Overwrite Mode

Overwrite Yes (OY) - If about to receive file with same name as one which
already exists, delete the old file and receive the
new file in its place.

Overwrite No (ON) - If about to receive file with same name as one which
(Default) already exists, append ".dup" onto the name of the new

file to keep them separate.

Overwrite (OR) - If about to receive file with same name as one which
Resume already exists, resume receiving file data from the

current end of the existing file.

Overwrite Skip (OS) - If about to receive file with same name as one which
already exists, tell sender never mind, skip this
file, we don’t want it. Batch transfers will move
on to the next file in the set, if any.

1.7 Buffer Size

Buffer Size (Bnnn) - XPRZModem.library adds a layer of file I/O ←↩
buffering in

(Default 16) addition to whatever the comm program may or may not
provide. This option sets the size of XPRZModem’s file

XPRZModem 6 / 17

I/O buffer in kilobytes. The minimum value is 1 KB, for
those using RAM drives or fast hard drives, or those whose
comm programs already provide sufficient buffering. The
maximum value is as much contiguous RAM as you have
available in your Amiga.

If you specify more than is actually available, XPRZModem
will keep decrementing the buffer size requested by 1 KB
until the memory allocation works. That way, if your RAM
is too fragmented to use the amount you request, XPRZModem
simply uses the largest block available. Buffering is
especially helpful for floppy drive users; it keeps your
drive from continuously gronking and slowing things down
all through the transfer. If you are a floppy drive user,
you might need to set the

Frame Size
.

NOTE: Versions of VLT prior to 5.034 couldn’t handle buffer sizes >= 32 KB.
If you wanted to use larger buffers before and couldn’t, try again now.

1.8 Frame Size

Frame Size (Fnnn) - Although normally avoided, ZModem has the ability to
(Default 0) require an ACK to be sent from the receiver to the sender

every X-many data bytes. Normally you don’t want to use
this feature, because not waiting for ACKs is part of how
ZModem works so fast. However, this feature can be very
useful in conjunction with file I/O buffering on slow
devices namely those floppy drives). If you set up a
large I/O buffer to avoid gronking your floppy so often,
you’ll find that when the buffer finally *does* get around
to being flushed that it can take a very long time; so long,
in fact, that the delay can cause timeouts and errors. But
if you set your ZModem to require the sender to wait for an
ACK every buffer’s-worth of data, the sender will politely
wait for you to flush your buffer to the slow floppy and
send it an ACK saying it’s OK to continue now. This value
should be set to 0 to disable ACKs (normal mode), or set it
to the actual number of data bytes allowed between ACKs.
For example, if you set B64 because of your floppy, you
should also set F65536.

1.9 Error Count

Error Count (Ennn) - This allows you to set the number of sequential errors
(Default 10) which will be required to convince ZModem to abort the

transfer. The normal value is 10, meaning that 10 errors
must happen in a row with no valid data being transferred
in order to cause an abort. This setting is provided for
those using XPRZModem with a BBS, who may wish to use a
relaxed setting, or those with really lousy phone lines

XPRZModem 7 / 17

who are desparate and patient enough to want the transfer
to continue in spite of horrible performance.

1.10 Block Size

Block Size (Mnnn) - Size of Block to transfer. Default of ZModem is 1024,
minimum is 64 Bytes and the Maximum is 8192 Bytes (8K).
Be careful with this option! If the uploaders blocks are
bigger than the receiver because there is a older zmodem
you will get errors and your cps-rate will slow down.
Large blocks are useful if you have a good phoneline and
a fast modem eg. 9600/14400 and higher. If you use larger
blocks you will save a little bit transfer overhead and
the cps-rate will get a little better. Remember, the
sender controlls the Blocksize. For Example, if you use
4096 and the BBS-System the default (1024), so if you
upload the ZModem use 4K-Blocks, if the BBS send data
you receive data with 1K-Blocks. For Sysop’s it will be
usefull if they install ZModem with different Blocksize
maybe 1K (Standart) to 8K, so the users can take what
they wants. This ZModem also runs with ZModem 8K or
ZedZap up to 8K.

1.11 Auto Activate

Auto-Activate Yes (AY) - If the comm program supports the ability, the library
(Default) will automatically go into receive mode when the start

of a ZModem download is detected.

Auto-Activate No (AN) - Don’t try to automatically start downloading, make the
user activate it.

1.12 Delete After Sending

Delete After Sending Yes (DY) - Delete each file after it has been sucessfully
sent.

Delete After Sending No (DN) - Don’t delete files after sending them.
(Default)

1.13 Keep Partial Files

Keep Partial Files Yes (KY) - Keep the fragment of a file received ←↩
so far if

(Default) file reception is aborted. This allows you to
use the

Overwrite Resume

XPRZModem 8 / 17

option above to pick up
where you left off on your next attempt.

Keep Partial Files No (KN) - Delete any partially-received file after an
aborted transfer.

1.14 Send Full Directory Path

Send Full Directory Path Yes (SY) - Send full filenames including directory
path to receiver.

Send Full Directory Path No (SN) - Send only simple filenames, not including
(Default) directory path.

1.15 Receive Full Directory Path

Receive Full Directory Path Yes (RY) - Use full filename exactly ←↩
as received,

instead of using the P option directory
path.

Receive Full Directory Path No (RN) - Ignore received directory path (if any),
(Default) use

P
option directory path instead.

1.16 Default Path

Default Path

Default Path for (Pxxx) - Store all received files in directory "xxx" if option
Received Files

RN
set. Ignored if option

RY
set. "xxx" can be any

valid existing directory, with or without trailing
"/" (e.g. "Pdf0:", "PComm:hold", etc.).

1.17 Serial Port Settings

This implementation of ZModem requires that your serial port be set to 8
data bits, no parity, 1 stop bit. This allows ZModem to send full 8-bit binary
data bytes without having them munged on the way through the modem. If your
comm program supports the xpr_setserial() function, XPRZModem will use it to
set your serial port to 8N1 before doing a transfer, and will set your port
back the way it was again after it’s done. If your comm program doesn’t

XPRZModem 9 / 17

support xpr_setserial(), you’ll need to make sure it’s in 8N1 mode yourself.

ZModem works well in all serial port handshaking modes; none, XON/XOFF, or
7-wire/RTS/CTS. Since any or all of those handshaking modes may be appropriate
at different times, with different modems or remote systems, XPRZModem lets you
set the handshaking mode and doesn’t mess with it.

1.18 Receiving Files

Once you get the
ZModem options
and your

serial port configuration
set

up properly, you’re ready to actually use this thing (gasp!). Receiving
files via ZModem is quite simple. First, get the file sender going by
using whatever command it wants. ZModem is a batch file transfer protocol,
meaning that it’s capable of transferring several files in a single
exchange, so the remote system may allow you to specify multiple files to
be sent to you at one time. It may also allow you to use wildcard
characters in the filename(s); this is all system dependant.

This may be all you have to do. If you specified option {"AY" link A}
({"auto-activate" link A on), and your comm program supports it, XPRZModem should
automatically activate at this point and start receiving your files. If
you specified

AN
, or your comm program doesn’t support auto-activation, you

should now use whatever option your comm program provides to activate file
reception. This will usually be a menu option or button gadget. Either
way, once XPRZModem starts receiving files, it should automatically receive
all of the files you specified into the proper directory as indicated by
the

R
and

P
options.

Make sure that you have set the ZModem options properly before
starting the transfer; especially, make sure you only use

TY
if you know

that all of the files being transferred in this batch are printable ASCII
text files. If you use

TY
on normal binary files like .ARCs or .ZOOs,

they’ll be mangled beyond use.

1.19 sending

Sending files using ZModem is fairly straightforward. First, activate
the file receiver with whatever command the remote system requires. You

XPRZModem 10 / 17

may or may not need to specify a filename or directory to the remote
system; this depends on their implementation of ZModem. Once the remote
system is ready to receive files, activate your comm program’s ZModem send
function. Your comm program will prompt you for which file(s) to send.
Although ZModem is a batch protocol, your comm program may or may not allow
you to specify multiple file names to be sent; also, wildcards may or may
not be supported. These decisions are up to the comm program author;
ZModem will handle multiple files and wildcards if the comm program allows
them. Once you’ve specified the file name(s), the file(s) will be sent to
the remote system.

If errors occur while sending the file(s), you’ll probably notice a
small enhancement I made to the normal ZModem error recovery procedures.
Normally, file transfer protocols have to compromise between efficient data
transmission on good, clean phone lines and quick error recovery on bad,
noisy phone lines. If you pick a large packet size, you get high
throughput on clean lines due to low packet overhead, but you have slow
recovery times and large amounts of retransmitted data on noisy lines. If
you’ve used YModem on noisy lines you’ve seen this problem. But, if you
use small packets to reduce retransmitted data on noisy lines, you increase
the amount of time the protocol spends sending packet overhead, and your
throughput suffers. The solution is to vary the block size according to
the experienced error rate during the transfer. That way you aren’t stuck
with a rigid packet length which will sometimes be the wrong size no matter
what. I came up with this idea back when I first wrote the ZModem code for
Opus, and cleared it for future compatibility with ZModem’s designer, Chuck
Forsberg, back then. Since then the basic concept has been extensively
tested in the Opus BBS system, and has proven quite effective; it has also
been incorporated into various other ZModem implementations over time. The
actual algorithm for deciding what size packets to use when is pretty much
up to the protocol author. XPRZModem uses a modified version of the Opus
algorithm which prevents locking the packet size at a small value when a
large one-time burst of errors occurs.

1.20 technical

Here are some notes for the "other" XPR standard users, namely the ←↩
comm program

authors:

Certain XPR callback functions *must* be implemented by the comm
program author in order for XPRZModem to be used. If any of these
functions are not supported by your comm program, XPRZModem will display an
error message and abort when invoked. These required functions are:

xpr_fopen(), xpr_fclose(), xpr_fread(), xpr_fwrite(),
xpr_fseek(), xpr_sread(), xpr_swrite(), and xpr_update()

The xpr_update() function provides many data fields for your comm
program to potentially display to the user. These are the XPR_UPDATE
struct elements which XPRZModem will keep updated during transfers:

xpru_protocol, xpru_filename, xpru_filesize, xpru_msg,
xpru_errormsg, xpru_blocks, xpru_blocksize, xpru_bytes,
xpru_errors, xpru_timeouts, xpru_blockcheck, xpru_expecttime,

XPRZModem 11 / 17

xpru_elapsedtime, and xpru_datarate

As you can see, XPRZModem tries to provide as many status fields as
possible. Although all of them are useful, the ones which are most
important to ZModem users are filename, filesize, msg and/or errormsg, and
bytes. Please try to provide at least these fields in your status display,
plus as many of the rest as you can manage.

Although only the XPR callback functions listed above are crucial for
XPRZModem, almost all of them are used if they are provided. Although
XPRZModem will function without any of the other routines, its performance
or capabilities may be degraded somewhat. Specifically, this is what you
give up if you choose not to supply any of these other XPR callback
functions:

xpr_sflush(): Used when performing error recovery and resync
when sending files. If not provided, extra timeout errors
and delayed error recovery will be likely. The files will
still be transferred properly, but errors will degrade
overall throughput more than usual.

xpr_chkabort(): Called between sending or receiving packets.
If not provided, there’s no way for your comm program user
to abort a transfer in progress except by trying to somehow
force it to decide to give up and abort on its own, such as
by turning off the modem and hoping the protocol will abort
after enough timeouts (it will, eventually...).

xpr_gets(): Called to prompt the user interactively for
options

when your comm program invokes XProtocolSetup() ←↩
with a null

xpr_filename field (if xpr_options() isn’t available
instead). If not provided, you’ll have to prompt
the user for the options string yourself, and pass this
string in xpr_filename when invoking XProtocolSetup().

xpr_setserial(): Called to obtain the current serial port
settings, and to change the
serial port
to 8N1 if it’s not

already set that way. If not provided, XPRZModem will
assume all transfers are being done at 2400 bps, which
won’t hurt anything, and your users will have to make sure
that the serial port is set to 8N1 themselves.

xpr_ffirst() and xpr_fnext(): If either of these routines are
missing, XPRZModem will lose the ability to send multiple
files in a batch. The xpr_filename pointer passed to
XProtocolSend() will be assumed to point to the actual full
filename of the single file to be sent in this batch. If
both of these routines are provided, XPRZModem will rely
upon them completely to obtain the names of the files to
send, and the xpr_filename pointer will not be used for any
purpose by XPRZModem except to be passed to ffirst/fnext.
This gives your comm program a way to send not just a single
filename template’s worth of files in a batch, but a list of

XPRZModem 12 / 17

different filenames. If, for example, you set xpr_filename
to point to the first node of a linked list of filenames
and/or templates to be sent, rather than just having it
point to a string, you can have your ffirst and fnext
routines traverse this linked list in order to determine the
next file to be sent. Or you could have xpr_filename point
to a buffer containing a list of filenames separated by
commas, and your ffirst/fnext routines could return each
filename in this list in turn. The key here is that if you
provide these two routines, you’re in complete control over
the series of names fed to XProtocolSend. If you omit these
routines, XPRZModem is stuck with single-file mode. Once
again, if these two routines are provided, XPRZModem will

always call them; it makes no attempt to use the
xpr_filename pointer for anything itself. This is not
explicitly spelled out in the XPR standard, but it seems the
only reasonable way to handle batch protocols to me.
Hopefully other XPR library authors will follow this
precedent as well, so that comm program authors will be able
to count on multiple-filename batch sessions being handled
properly.

xpr_finfo(): Used to determine the filesize of files being sent,
in order to tell the receiving system how big they are.
Also used to determine the size of a file which already
exists when in
Overwrite Resume
mode; XPRZModem must be able

to get the size of the current portion of the file in order
to be able to tell the sender where to resume sending from.
If this routine isn’t provided,
Overwrite Resume
mode is

not allowed. This routine is also used to check if
Text mode

should be set to Y or N for each file when option
TC
is set.

xpr_options(): If you don’t supply this, users will be stuck
with setting the library
options
via the semi-cryptic text

string method (ENV: and/or xpr_gets()). This routine and
xpr_update() have a lot to do with the look and feel of your
program when using XPR libraries; any skimping on these two
routines will be painfully obvious to the user. Conversely,
doing a nice job on these two routines will really make your
program shine.

xpr_unlink(): Required by the
DY
and

KN
options, so if you don’t

supply it, those options are not allowed.

XPRZModem 13 / 17

1.21 future

I don’t want or expect this to be the last or only XPR ZModem library
available. There are a lot of less-commonly-used ZModem features which have
popped up over the past few years, and many people might like to see some of
them made available. Such as full control-character escaping, or maybe 8th bit
escaping to allow use of 7-bit serial channels. I didn’t want to add a bunch
of rarely-used bells and whistles to this version of the library, because I
want it to be able to serve as comprehensible example code. I just want to
provide a good solid ZModem which reliably handles the majority of people’s
needs. Hopefully, this will serve as a foundation for future enhanced
versions, while providing a safe fallback for people to come back to if that
fancy new enhanced version (with neo-maxi zoomed weebies) tºÑºÓ out to need
some more debugging.

1.22 history

1.0, 29 Jul 89 - Original release.

1.1, 03 Aug 89 - Fixed zsdata() to send file data packet in one swrite()
call instead of calling zsendline for every byte, to prevent
hammering the serial.device with single-byte write requests
during uploads, and to speed up effective data transmission
rates.

2.0, 28 Oct 89 - Converted from Manx to Lattice C 5.04. Created prototypes and
made other tweaks as required. Designed new library skeleton
for Lattice code, replacing the old Manx library skeleton.
Added new options TC, A, D, K, S, R, and P. Added support for
xpr_options() callback routine, and generally brought things
up to par with XPR Spec 2.0.

2.10, 12 Feb 91 - Fixed the following generally minor problems:

o No longer munges A6 register (this was potentially serious), and added
callback glue to ensure comm program can’t munge OUR registers either.
Decided that the protective glue was much safer than the more elegant
direct invocation used in version 2.0.

o Slightly less transmission overhead (concatenates all output into single
swrites, builds output packets a bit faster).

o Considerably less receive overhead; does a lot more waiting and a lot
fewer sreads, especially at high speed. WARNING: this change doesn’t
work with VLT version 4.846 or earlier (yes, Willy; it really was
broken B-)). This change may or may not actually do you any good,
depending upon how your comm program implements the xpr_sread() function.

o Fixed problems getting synchronized with some systems on uploads.

o No longer closes files twice.

o Now uses fully-reentrant sprintf() from amiga.lib; no more nasty BSS.

XPRZModem 14 / 17

o A couple of obscure error messages were > 50 bytes long, causing problems
with some comm program’s transfer status windows, e.g. the infamouse VLT
"Incredible Shrinking Status Window."

o Stabilized spastic data rate by computing elapsed time more accurately.

o Fixed sprintf() error which caused invalid filelength to be sent on
uploads.

o Aligned all data for optimal performance on 68030++ CPUs (now that I have
my A3000... B-)). Doesn’t really make any noticeable difference, but it
makes us 68030 owners feel better anyway. I’m also including a version of
the library compiled for the 68020+ CPU, on the same principle.

o Now uses .DUP2 instead of .DUP.DUP, etc.

o Added config option E for number of errors which cause an abort.

o Fixed bogus IO_Torture false alarm concerning timer.device.

o Tried to fix an elusive Enforcer hit on reading location 0, but I’m not
sure I really got it, since I had trouble reproducing the problem.

2.50, 15 Nov 91 - Fixed bugs and added the following features:

o Added code to support 32 bit CRC (Circular Redundancy Check).
CRC-32 adds a little more protection to the data being sent
and received than does CRC-16. Source for the CRC-32 additions
came from the Unix version of RZ/SZ by Chuck Forsberg.

o Added code to update_rate() function in utils.c to avoid the
Guru # 80000005 if you decide to adjust the system clock during an
upload or download from Daylight Saving Time to Standard Time. :-)

o Proto additions using libinit.o and libent.o, and eliminating all
of the assembler code was supplied by Jim Cooper of SAS. Jim
also supplied the mysprintf() code to replace sprintf(). This
version of XprZmodem can be compiled with the SAS version 5.10 C Compiler.
I do not know how well it might compile with the Aztec compiler.

2.51, 29 Jan 92 - Rxtimeout changed from 600 to 300 for upload timeout
problem by John Tillema.

2.52, 06 Mar 92 - Recompile code for 68020 library code. Non-68020 code worked
fine but John Tillema was not able to test the 2.51 68020
version.

2.53, ?? ??? ?? - Special Version by Olaf ’Olsen’ Barthel Author from "Term"
(Don’t know what he changed)

2.60, ?? ??? ?? - Don’t know who made this version

2.60a,?? ??? ?? - Don’t know who made this version

2.61, 3 July 93 - Rainer Hess made the following changes:

o NOT RELEASED! ONLY FOR BETATESTER.

XPRZModem 15 / 17

o mysprintf() in Utils.c - returned int changed to unsigned int.
SAS/C gave a Warning about this.

o In function XProtocolHostMon() (module Utils.c) declared
static UBYTE startrcv[] = { ZPAD, ZDLE, ZHEX, "00" };
SAS/C 6.x gave an error about this.
Declared to:
static UBYTE *startrcv[] = { ZPAD, ZDLE, ZHEX, ’0’,~’0’ };

2.62, 27 Jul 93 - Rainer Hess made the following changes:

o NOT RELEASED! ONLY FOR BETATESTER.

o Now Blocksize avaiable

2.63, 30 Jul 93 - Rainer Hess made the following changes:

o NOT RELEASED! ONLY FOR BETATESTER.

o Now support locale.library to use different languages with
Workbench 2.1, 3.x. On this time will be only the default
english-language and a german catalog-file. Please send me
the filled up xprzmodem_catalog.ct for your language.

2.64, 3 Aug 93 - Rainer Hess made the following changes:

o NOT RELEASED! ONLY FOR BETATESTER.

o Blocksize was global declared, it’s now in struct Vars.

o Bug-Fix in function update_rate(), machine crashes on little files
e.g. 2 Bytes - old problem from 2.52 and before!

3.0, 13 Aug 93 - Rainer Hess made the following changes:

o It’s time to make a full release...

3.1, 01 Oct 93 - Documentation update by Geoffrey Faivre-Malloy

o Conversion of documentation to Amigaguide format.

03 Oct 93 - Changes by Rainer Hess:

o ZModem runs always with the sender blocksize or uses standart-mode
(M1024) if there is on one system a older zmodem.

1.23 todo

Here are some features that would be nice for XPRZModem to have sometime
in the future. If there are any capable hackers out there that would like
to improve upon what has already been written, feel free to do so.

o Preserve date of file being transferred.

XPRZModem 16 / 17

o Investigate possibility of saving file protection bits.

o Work out ways to increase the transfer speed.

o Additional changes as time and others may suggest.

1.24 credits

Special thanks (in alphabetical order) go to:

Olaf ’Olsen’ Barthel

Jim Cooper

Geoffrey Faivre-Malloy

Rainer Hess

Rick A. Huebner

Willy Langeveld

Marco Papa

William M. Perkins

John Tillema

1.25 Olaf ’Olsen’ Barthel

Who knows what he changed!

1.26 Jim Cooper

Supplied the mysprintf code.

1.27 Geoffrey Faivre-Malloy

Converted XPRZModem documentation to amigaguide format.

1.28 Rainer Hess

XPRZModem 17 / 17

Responsible for version 2.61 to 3.1.

EMail: rhess@a3tnt.adsp.sub.org

1.29 Rick A. Huebner

Wrote XPRZModem.library! Without him we wouldn’t have this wonderful source
code to base this on :)

1.30 Willy Langeveld

Invented the XPR version 1.0 and had help from
Marco Papa
updating it to

version 2.0. Willy is the author of the popular telecomm program VLT.

1.31 Marco Papa

Collaborated with
Willy Langeveld
in updating the XPR specs from 1.0 to 2.0.

1.32 William M. Perkins

Spent many selfless hours of his life updating XPRZModem (2.50 & 2.52)

1.33 John Tillema

John fixed a bug in 2.51 of the library.

	XPRZModem
	XPRZModem.guide
	introduction
	installation
	options
	Text Translation Mode
	Overwrite Mode
	Buffer Size
	Frame Size
	Error Count
	Block Size
	Auto Activate
	Delete After Sending
	Keep Partial Files
	Send Full Directory Path
	Receive Full Directory Path
	Default Path
	Serial Port Settings
	Receiving Files
	sending
	technical
	future
	history
	todo
	credits
	Olaf 'Olsen' Barthel
	Jim Cooper
	Geoffrey Faivre-Malloy
	Rainer Hess
	Rick A. Huebner
	Willy Langeveld
	Marco Papa
	William M. Perkins
	John Tillema

